
Exam multivariable analysis Jan 2020

Exercise 1

a. Prove that the sum of two differential k-forms ω, η is again a differential k-form.

b. If both ω and η are C1 differentiable, show that their sum is also C1 differentiable.

c. Under the assumptions of part b. prove that d(ω + η) = dω + dη.

Exercise 2

a. For a k-form defined on an open disk centered around the origin, explain why ∂γ = 0 and
dω = 0 implies

∫
γ
ω = 0. Here γ is any k-chain whose image is inside the above disk.

b. Prove that if f is a real valued continuous function defined on a rectangle R ⊂ Rn and f(r) > 0
for all r ∈ R then

∫
R
f > 0. Here R =

∏n
i=1[ai, bi] for some ai < bi ∈ R.

c. Suppose we have a continuous function C
Φ−→ C where C ⊂ Rn is closed and bounded and

there is an α ∈ (0, 1) such that for all x 6= y ∈ C we have |Φ(x)−Φ(y)| < α|x−y|. Prove that
if p is a fixed point for Φ then for any x ∈ C the sequence x,Φ(x), (Φ◦Φ)(x), (Φ◦Φ◦Φ)(x), . . .
must converge to p.

Exercise 3

a. Define a 2-form on R3 by ω = xdx ∧ dy + ydx ∧ dz and a function R2 f−→ R3 given by
f(s, t) = (s, s2, st). Express f∗ω in terms of ds and dt.

b. Compute
∫
γ
ω where the 2-cube γ is determined by γ(s, t) = f(s, t).

c. Why is there no 1-form α on R3 such that dα = ω?

Exercise 4
For 0 < m ≤ n consider the system of m equations in n+m unknowns x1, . . . xn, y1, . . . ym:

x1y1 + y1 = 0

x1x2(y2)2 + y2 = 0

x1x2x3(y3)3 + y3 = 0

. . . . . .

x1x2x3 . . . xm(ym)m + ym = 0

Prove that close to (x, y) = (0, 0), the solution set coincides with the graph of a C1 function

N
g−→M . For some open sets M ⊂ Rm and N ⊂ Rn.



Solutions

Exercise 1

a. Prove that the sum of two differential k-forms ω, η is again a differential k-form.
By definition (ω+η)(p) = ω(p)+η(p) and since ω(p), η(p) ∈ Λk(Rn)∗ and Λk(Rn)∗ is a vector
space we have ω(p) + η(p) ∈ Λk(Rn)∗ showing that the sum is indeed again a k-form.

b. If both ω and η are C1 differentiable, show that their sum is also C1 differentiable.
A k-form ω can always be written as

∑
J ωJe

J for certain functions ωJ : Rn → R, where the
sum runs over all k-element increasing sequences in {1, . . . n}. The form ω is C1 if all the
fJ are. By definition the sum ω + η can be written as ω + η =

∑
J(ωJ + ηJ)eJ so we need

to show that the sum of two C1 functions is again C1. This follows from the fact that the
partial derivative of the sum is the sum of the partial derivatives and also that the sum of
two continuous functions is again continuous.

c. Under the assumptions of part b. prove that d(ω + η) = dω + dη.
Using the same notation as above we have by definition d(ω + η) = d

∑
J(ωJ + ηJ)eJ =∑

J d(ωJ + ηJ) ∧ eJ =
∑
J(dωJ + dηJ)) ∧ eJ =

∑
J dωJ ∧ eJ +

∑
J dηJ ∧ eJ = dω + dη.

Exercise 2

a. For a k-form defined on an open disk centered around the origin, explain why ∂γ = 0 and
dω = 0 implies

∫
γ
ω = 0. Here γ is any k-chain whose image is inside the above disk.

Since dω = 0 and we are on the disk the Poincare lemma applies and there exists a (k−1)-form
α such that ω = dα. Next Stokes theorem says that

∫
γ
ω =

∫
γ
dα =

∫
∂γ
α = 0 since ∂γ = 0.

b. Prove that if f is a real valued continuous function defined on a rectangle R ⊂ Rn and f(r) > 0
for all r ∈ R then

∫
R
f > 0. Here R =

∏n
i=1[ai, bi] for some ai < bi ∈ R.

One of the properties of the integral is that it is bounded from below by the minimum of the
function times the volume of the rectangle. Since the rectangle is closed and bounded the
minimum is actually attained and it is positive since f is everywhere positive. The volume of
the rectangle is non-zero by assumption.

c. Suppose we have a continuous function C
Φ−→ C where C ⊂ Rn is closed and bounded and

there is an α ∈ (0, 1) such that for all x 6= y ∈ C we have |Φ(x)−Φ(y)| < α|x−y|. Prove that
if p is a fixed point for Φ then for any x ∈ C the sequence x,Φ(x), (Φ◦Φ)(x), (Φ◦Φ◦Φ)(x), . . .
must converge to p.
Since Φ(p) = p and if Φn(x) means applying Φ to x n times we have |Φn(x)− p| < αn|x− p|.
Choose ε > 0 then |Φn(x)− p| < ε when n > logα

ε
|x−p| .

Exercise 3

a. Define a 2-form on R3 by ω = xdx ∧ dy + ydx ∧ dz and a function R2 f−→ R3 given by
f(s, t) = (s, s2, st). Express f∗ω in terms of ds and dt.
Since f∗d = df∗ we have dx = ds and dy = 2sds while dz = sdt+ tds so f∗ω = sds ∧ 2sds+
s2ds ∧ (sdt+ tds) = s3ds ∧ dt.



b. Compute
∫
γ
ω where the 2-cube γ is determined by γ(s, t) = f(s, t).∫

γ

ω =

∫
I2
s3ds ∧ dt =

∫
[0,1]2

s3 =

∫
[0,1]

s3 =
1

4

c. Why is there no 1-form α on R3 such that dα = ω?
Because dω = dy ∧ dx ∧ dz 6= 0.

Exercise 4
For 0 < m ≤ n consider the system of m equations in n+m unknowns x1, . . . xn, y1, . . . ym:

x1y1 + y1 = 0

x1x2(y2)2 + y2 = 0

x1x2x3(y3)3 + y3 = 0

. . . . . .

x1x2x3 . . . xm(ym)m + ym = 0

Prove that close to (x, y) = (0, 0), the solution set coincides with the graph of a C1 function

N
g−→M . For some open sets M ⊂ Rm and N ⊂ Rn.

Writing the solution to the system of equations as f−1(0) with f given by

f(x, y) =

m∑
i=1

((

i∏
j=1

xj)(yi)
i + yi)ei

we see that with F (y) = f(0, y) we get F (0) = Id and so F ′(0) is also the identity which is invertible.
By the implicit function theorem this means that the solution set f−1(0) is locally equal to the

graph of a C1-function N
g−→M . For some open sets M ⊂ Rm and N ⊂ Rn.


